1978-1979

TEACHING ACTIVITIES

UNDERGRADUATE TEACHING¹

1.	Descriptive Geometry (Technion) (10)	1965-1968	
	Principles of space geometry, projections, plane and space representation of regular objects,		
	intersections, shading principles, isometry and perspective.		
2.	Structural Analysis (Technion) (30)	1978-1979	
	Basic equilibrium under static loads, internal stress resultant distribution, beams, trusses,		
	virtual work methods, influence lines, moment distributions, slope deflection, matrix		
	methods.		
3.	Experimental Mechanics (Technion (30)	1977-1979	
	Hands on experiments on material testing (tension, compression, shear), photoelasticity,		
	strain gages, analog computers, structural vibrations.		
4.	Design of Structural Systems (Technion) (30)	1978-1979	
	Definition of systems, planar and space tubular structures, shells, folded plates, precast		
	systems, blast protective systems.	2	
5.	Numerical Methods SUNY/Buffalo (EAS 451) (100)	$1980-1984^2$	
	Matrix analysis, transformations, eigenvalues, nonlinear equations, numerical integration,		
	differentiation, error analysis, nonlinear differential equations, partial differential equations,		
	curve fitting, introduction to optimization.		
6.	Engineering Mechanics (SUNY/Buffalo EAS205 & EAS206) (30)	1981-1982	
	Principles of equilibrium, dynamics, vectorial motion, structural members, stress - strain		
	constitutive laws, stress-strain tensors, transformations, stress resultants introduction to		
	design of simple mechanical components.		
7.	Structural Analysis & Design (SUNY/Buffalo CIE323 and CIE324) (30)	1982-1983	
	Basic equilibrium under static loads, internal stress resultant distribution, beams, trusses,	2006	
	virtual work methods, influence lines, moment distributions, slope deflection, matrix		
	methods, basic design of steel and reinforced concrete members, shear and torsion analysis.		
8.	Reinforced Concrete Analysis and Design (SUNY/Buffalo CIE429) (55) ³	1984-2005	
	Design of concrete buildings- sections, beams, slabs, columns, footings including shear,		
	torsion, axial-bending interactions - system approach. Introduction to basic engineering		
	sketching and drafting		
9.	Structures Laboratory (SUNY/Buffalo CIE325) (10-80) [‡]	1985-1996	
	Experiments or basic material testing and structural members, shear, torsion, indeterminate		
	frames, arches, force measurements, introduction to modern measurement systemselectrical		
	instrumentation, computer data acquisition.		
10.	Computer Graphics (SUNY/Buffalo, CIE 460) (10) [‡]	1989-1992	
	Basic X-Y plotting, spread-sheet interactive graphics ("QUATRO"), principle of engineering		
	drawing-planes, lines, objects - "In-A-Vision", lettering-text superposition advanced		
	graphics, curves, and curved surfaces ("Grapher"), Analysis of buildings ("Strand"), Basic		
	graphics theory-using, translation, rotations, ("Hoops").		
11.	Structural Analysis Advanced (SUNY/Buffalo CIE423) ⁶	2009-2012	
	Virtual work methods, influence lines, moment distributions, slope deflection, matrix		
	methods, approximate methods of analysis.		
	Go to <u>List of Sections</u>		
_			

GRADUATE TEACHING⁴ 1. Advanced Structural Dynamics (Technion) (8)

Second course in structural vibrations, nonlinear systems, energy principles Lagrange equations, Laplace and Fourier domain, probabilistic and statistical methods, computer analog simulations, approximate methods, Galerkin, Rayleigh, Ritz, etc.

¹ Numbers in parentheses show approximate class size per semester. ² Taught every semester i.e., twice a year.

³ Courses newly developed or substantially changed.

⁴ Numbers in parentheses show approximate class size per semester.

2.	Earthquake Engineering and Structural Dynamics (SUNY/Buffalo CIE619) (15) [‡] Advanced methods in structural dynamics - approximate methods (Rayleigh, Ritz, direct and subspace iterations, transfer matrix), probabilistic approaches and random processes, nonlinear dynamics. Introduction to seismology, ground motion, earthquake simulation,	1981-2002 2009
	structure response, spectrum approach, concrete and steel structures design, frequency	
	analysis, nondeterministic analysis.	
3.	Advanced R/C and Prestress Concrete Design (SUNY/Buffalo CIE525) (15)	1982-1988
	Analysis and design of prestress concrete (P/C) beams, frames, slabs, limit design of frame	
	structures, ductility and hysteretic behavior. Yield line theories and plastic design of slabs;	
	shells - circular and hypars.	
4.	Experimental Mechanics (SUNY/Buffalo CIE616) (5) [‡]	1982-1991
	Hands on experiments on material testing (tension, compression, shear), photoelasticity,	
	strain gages, analog computers, structural vibrations, in depth theory of instrumentation,	
	vibration measurements and processing of vibration data - frequency analysis, filtering etc.	
5.	Civil Engineering Seminar (SUNY/Buffalo CIE505B) (15) [‡]	1988-1995.
	Invited speakers in area of structures and geotechnical engineering speak about current topics	
	of research which were partially solved and need discussions and further investigations.	
	Invited lectures from local faculty and graduate students. Invited several speakers from other	
	Universities in U.S. and abroad.	-
6.	Introduction to Computer Graphics (SUNY/Buffalo CIE501 - Special Topics) (8) ^{\ddagger}	1988-1990 ⁵
	Newly developed course presents basic graphic representations using C-programming	
	language, translations, rotations, Civil engineering substructures, beams, columns, footings;	
	plotting in 2-D - 3D structures (Hoops environment); screen oriented interaction; interactive	
	structural analysis (PREPF, STRAND, QUAND, IDARC) - [Developed in association with	
	Professor J. Abel (Cornell Univ.), and Dr. S.K. Kunnath (SUNY/Buffalo)].	
7.	Experimental Methods in Structural Engineering (SUNY CIE616 (12 avg) ⁶	1997,2002
	New course on experimental methods including design of experiments; scaled models,	2004, 2007
	development and use of electronic instruments, data acquisition systems and advanced data	2008, 2010,
	processing Two-hour lecture and three-hour lab weekly.	2011
8.	Dynamics of Structures (SUNY/Buffalo, CIE519) (20)	1991-2001
	Introductory course to dynamics of single and multi-degree-of-freedom systems,	
	Frequency domain approaches.	

 ⁵ Taught every semester i.e., twice a year.
⁶ Courses newly developed or substantially changed.